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Abstract. The thermal entanglement in a two-qutrit system with two spins coupled by exchange inter-
action is investigated in terms of the measure of entanglement called “negativity”. It is found that the
thermal entanglement is present and evolvements symmetrically between both ferromagnetic and anti-
ferromagnetic exchange couplings with the temperature. Moreover the critical temperature at which the
negativity vanishes increases with the exchange coupling constant J . From the temperature and magnetic
field dependences we demonstrate that the temperature and the magnetic field can affect the feature of
the thermal entanglement significantly.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 75.10.Jm Quantized spin models – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)
– 03.67.Lx Quantum computation

Entanglement as a key concept in quantum information
processing (QIP) [1–3] has attracted a lot of attention
both experimentally and theoretically in recent years [4].
Since the entanglement is fragile, the problem of how to
create stable entanglement remains a main focus of recent
studies in the field of quantum information processing.
The thermal entanglement, which differs from the other
kinds of entanglements by its advantages of stability, re-
quires neither measurement nor controlled switching of in-
teractions in the preparing process, and hence becomes an
important quantity of systems for the purpose of quantum
computing.

The thermal entanglement has been extensively stud-
ied for various systems including isotropic [5–8] and
anisotropic [9] Heisenberg chains, Ising model in an ar-
bitrarily directed magnetic field [10], and cavity-QED [11]
since the seminal works by Arnesen et al. [6] and
Nielsen [12]. Based on the method developed in the con-
text of quantum information, the relaxation of a quan-
tum system towards the thermal equilibrium is investi-
gated [13] and provides us an alternative mechanism to
model the spin systems of the spin- 1

2 case for the ap-
proaching of the thermal entangled states [5–9,14–17]. In
this paper, we study the thermal entanglement, however,
for two spin-1 particles system with two spins coupled by
the exchange interaction in an external magnetic field. We
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derive the thermal entanglement as a function of the ex-
change constant, the temperature and the external mag-
netic field as well. The development of laser cooling and
trapping provides us more ways to control the atoms in
traps. Indeed, we can manipulate the atom-atom coupling
constants and the atom number in each lattice well with
a very well accuracy, our system consists of two wells in
the optical lattice with one spin-1 atom in each well [18].
When the nonlinear couplings are ignored, the system in
the absence of the external magnetic field can be described
by the following Hamiltonian

H = J(Sx
1 Sx

2 + Sy
1Sy

2 ) (1)

in which the neglected exchange coupling term along the
z-axes is assumed to be much smaller than the coupling in
the x−y-plane. Where Sα (α = x, y) are the spin operator,
J is the strength of Heisenberg interaction and total spin
for each site Si = 1 (i = 1, 2). With the help of raising
and lowering operators S±

n = Sx
n ± iSy

n, the Hamiltonian
H is rewritten as

H =
J

2
(S+

1 S−
2 + S−

1 S+
2 ). (2)

To evaluate the thermal entanglement we first of all find
the eigenvalues and the corresponding eigenstates of the



410 The European Physical Journal D

Hamiltonian (Eq. (2)) which are seen to be
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where
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2
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Here |i, j〉 (i = −1, 0, 1 and j = −1, 0, 1) are the eigen-
states of Sz

1Sz
2 . The density operator at thermal equilib-

rium ρ(T ) = exp(−βH)/Z, where Z = Tr[exp(−βH)] is
the partition function and β = 1/kBT (kB is Boltzmann’s
constant being set to be unit kB = 1 hereafter for the
sake of simplicity and T is the temperature), can be ex-
pressed in terms of the eigenstates and the corresponding
eigenvalues as

ρ(T ) =
1
Z

{ |Ψ1〉 〈Ψ1| + |−1,−1〉 〈−1,−1|+ |1, 1〉 〈1, 1|
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(5)

with the partition function seeing to be Z = 3 +
4 cosh[m] + 4 cosh[

√
2m] and m = J/2T .

Here will give the entanglement in terms of the mea-
sure of entanglement called “negativity” [19] which can be
computed effectively for any mixed state of an arbitrary
bipartite system, the negativity vanishes (i.e. negativity is
equal to zero) for unentangled states. For our purpose to
evaluate the negativity in what following we need to have
a partially transposed density matrix ρTA of original den-
sity matrix ρ with respect to the eigenbase of any one spin
particle (say particle A) of our two-spin system which is

found in the basis {|i, j〉 , i = −1, 0, 1 and j = −1, 0, 1} as

ρTA =
1
Z

×
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where M = sinh[J/2T ], N = cosh[J/2T ], P =
sinh[J/

√
2T ], Q = cosh[J/

√
2T ]. The negativity as the

entanglement measure [20] is defined by

N(ρ) =
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∣
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2
(7)
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∣
∣
∣
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∣
∣
∣
∣ =

√

Tr[ρTA ]+ρTA denotes the trace
norm [21] of the density matrix ρTA which is equal to the
sum of the absolute eigenvalues of ρTA . Although the nega-
tivity lacks a direct physical interpretation, it bounds two
relevant quantities in quantum information processing —
the channel capacity and the distillable entanglement. As
the negativity is a computable measure of entanglement
for biparticle system with any dimension, we here adopt
it to measure the thermal entanglement.

Summing over the absolute eigenvalues of the density
matrix ρTA we have

N(ρ) =
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where

p = 4 +
2 + 8 cosh[m]

1 + 2 cosh[
√

2m]
,

q = −4 +
18 + 8 cosh[m]

3 − 2 cosh[
√

2m]
,

d± = 1 ± 6 cosh[
√

2m]

−
√

(1 − 2 cosh[
√

2m])2 + 32 sin2[m].

Figure 1 shows the plot of the negativity as a function of
the exchange constant J for different temperature T . The
state

∣
∣Ψ−

4

〉

is seen to be the ground state for J > 0 while
the state

∣
∣Ψ+

4

〉

is the ground state for J < 0. The entan-
glement approaches its maximal value at zero temperature
T → 0 and decreases with increase of temperature due
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Fig. 1. The thermal entanglement vs. the exchange constant J
for the different temperature T . T = 0.05 (solid line), T = 0.4
(dashed line), T = 1 (dotted line). J and T are plotted in units
of the Boltzmann’s constant kB .

Fig. 2. The thermal entanglement vs. the temperature T for
different exchange constant J . J = 1 (solid line), J = 0.5
(dashed line), J = 1.5 (dotted line).

to mixing of the excited states with the ground state. It
is found that thermal entanglement is the same for both
positive and negative exchange coupling J . That is to say,
the entanglement is present in both antiferromagnetic and
ferromagnetic chains. In contrary to this, for the case of
two-qubit Heisenberg model, no thermal entanglement is
present for the ferromagnetic case. We can see that there
is a segment for J in which the negativity is zero, moreover
the segment increases with T , these similar results have
not been discussed for two-qubit case. From Figure 2, it
can be seen that the critical temperature increases with J ,

that is to say, the entanglement at the fixed temperature
can be increased by increasing the coupling constant J .
In fact, the dependences of entanglement on the coupling
constant are discussed for two-qubit XY models in the
last studies [22], but that is only for the spin- 1

2 case.
We now consider the model with an external magnetic

field. With the help of raising and lowering operators the
Hamiltonian H is written as

H =
J

2
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1 S+
2 ) + B(Sz
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The eigenvalues and eigenvectors are obtained as
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The density operator is obtained as
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1
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with the partition function Z = 1 + 2 cosh[2n] +
4 cosh[n] cosh[m] + 4 cosh[

√
2m], n = B/T .

see equation (12) below.

We perform the numerical diagonalization of the density
matrix and the numerical results of the entanglement
measure are presented in figures from 3 to 4. Figure 3
shows the plot of the negativity as a function of temper-
ature T for various fixed values of magnetic field B when
J = 1. For B = 0 and J > 0, the state

∣
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4

〉

is the ground
state with eigenvalues −J/

√
2. In this case, the maximal

entanglement is approached at T = 0. As T increases, the
negativity decreases due to the mixing of the excited states
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Fig. 3. The thermal entanglement vs. the temperature T for
J = 1 and different magnetic field: B = 0 (solid line), B = 0.2
(long dashed line), B = 0.4 (dashed-dashed line), B = 0.6
(dotted line).

Fig. 4. The thermal entanglement vs. the magnetic field B for
J = 1 and different temperature: T = 0.01 (solid line), T = 0.1
(dashed line), T = 0.3 (dotted line).

with the ground state. For a higher value of the mag-
netic field B (say B = 0.6), the state |−1,−1〉 becomes
the ground state and there is no entanglement at T = 0.
However we may increase the entanglement by increasing
of temperature T in order to bring the entangled eigen-
states such as |Ψ1〉, |Ψ±

2 〉, |Ψ±
3 〉, |Ψ±

4 〉, into mixing with the
ground state. We also found that the critical temperature
is almost the same for different external field. These results
are consistent with those for two spin- 1

2 particle system.
From Figures 3 and 4, for a fixed coupling constant (say
J = 1), the entanglement with external magnetic field
trails off to zero at a faster rate than that without exter-
nal magnetic field, moreover, the maximum entanglement
that the system can arrived becomes smaller as the mag-
netic field increases.

In Figure 4, the plot of the negativity as a function of
the magnetic field B for different temperature T is pre-
sented. For B = 0, we can see that the lower tempera-
ture corresponds to the higher negativity. The negativ-
ity tardily decreases as the magnetic field increases. The
change in negativity as T increases from absolute zero is
due to population of excited levels. When the temperature
is close to absolute zero, we can see that the negativity has
a sharp change and becomes a nonanalytic function of B.

To conclude, we have studied the thermal entangle-
ment in a two-qutrit system and the dependence of the
thermal entanglement on the exchange constant, the ex-
ternal magnetic field and temperature as well. We have
found that thermal entanglement is present for both fer-
romagnetic and antiferromagnetic coupling and moreover
the negativity are the same for both positive and negative
couplings. That is to say, the entanglement is present in
both antiferromagnetic and ferromagnetic chains. In con-
trary to this, for the case of two-qubit Heisenberg model,
no thermal entanglement is present for the ferromagnetic
case. The entanglement at the fixed temperature can be
increased by increasing the coupling constant J . The crit-
ical temperature is dependent of the exchange constant
J and increases with the absolute value of |J |, moreover,
the critical temperature is almost the same for different
external field. These results are consistent with the previ-
ous study for spin- 1

2 case. The entanglement with external
magnetic field trails off to zero at a faster rate than that
without external magnetic field. The change in negativity
as T increases from absolute zero is due to population of
excited levels. The results show that the temperature and
the magnetic field really affect the feature of the thermal
entanglement in the system considered.
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